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1. INTRODUCTION

The physical problem we are addressing in this study is the rapid deposi-
tion of thermal energy on the surface of a composite plate within which a
delamination exists. The high energy flux will stress and perhaps vaporize the
surface plies, and a shock stress wave is initiated through thermal expansion
and the momentum imparted by the blowoff. As this compressive wave initially
passes the delamination, the crack will tend to close and the wave will simply
pass through, But as the wave reflects off the bottom free surface, it will

return as a tensile wave. This wave will open the delamination and produce

excessive stresses at the crack tip. The high stress field could conceivably
cause the delamination to grow and result in the catastrophic failure of the
plate. In addition to the initiation of a longitudinal stress wave, a shear
wave may ensue from a nonuniform spatial distribution or edge effects of the
laser energy flux. Matters are further complicated by the anisotropic and
nonhomogeneous makeup of the composite plate. Hence, the longitudinal and
shear waves will propagate at speeds dependent on the ply orientation.

' Several time scales may be identified, The energy deposition typically

occurs within hundredths of a microsecond, Depending on the wavelength of the

source, the energy may be deposited on just the surface or throughout the
plate, but in either case it results in an almost instantaneous change in the
temperature. This rapid rise in temperature may produce a phase change at the

surface. Subsequently, the pressure in the gas phase becomes very high, and

= 3 = o 2

the adjacent solid portion responds with a stress wave. This wave will
traverse the thickness of the plate on the order microseconds. The conduction

of heat takes place over a much longer time scale., For example, a temperature

o) ¢ A

change of 17 requires on the order of 100 milliseconds.

1.1 The Energy Deposition Phase

The analysis tools required for the study of composite structures subjected

t¢ vapid thermal pulses are conveniently considered in three parts, two of
which are analyzed in some detail in this study. The first part is the deter-

k minaticn of the nature of the thermal pulse from knowledge or assumptions

about the source of that pulse, which is only discussed in generalities here.
Sources of interest include laser weapons, nuclear weapon X-rays, particle
beams, and other energy sources. The analysis of this part of the problem

must consider the interaction of an clectromagnetic source with the material
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of the composite structure and must analyze the subsequent radiation transport
in that material. Analysis techniques are available, but experimental data
sufficient to define material properties for energy deposition in pclymeric
materials charucteristic of composites are sparse or nonexistent,

The outcome of a study of this radiation transport is a time-position
profile of the thermodynamic state of the composite structure. Fortunately,
to study and develop the tools required for the remaining two parts of the !
problem, it is not necessary to have specific numerical results. Rather, it
is only necessary to know the general nature of the results so that thc tools
for the rest of the analysis are sufficient to cope with the range cf possibi-
lities. A short discussion of the general nature, and of the differences due
to the variety of possible source types, is given.

It is convenient to classify energy sources according to their range of
initial spatial influence and their temporal duration. The best studied
source is the detonation of a nuclear weapon near a structure of interest.

The predominant energy of a modern fusion device is in a substantial X-ray
output that impinges on, and is absorbed into, the adjacent material., If the
detonation is in the atmosphere, the surrounding air absorbs the energy, and a
blast wave is formed that propagates outward and strikes nearby structures.
Alternatively (and exclusively if there is no significant atmosphere present),
the radiation directly reaches a nearby structure. The energy is then absorbed
by the material in the structure,

The time scales of this energy transport phase are typically very short in
comparison to the other significant time scales of the problem. In many cases,
it is considered instantaneous. The characteristic depth of the energy deposi-
tion depends markedly on the composition of the structure. Materials with high
atomic numbers absort the energzy in very shallow depths, while so-called
"low-Z" materials have much greater absorption depths.

Thus, energy deposition due to nuclear devices is typically of very short
duration. The depths of deposition can be either thin compared to structural
dimensions (e.g., a skin thickness of a missile) or of that same size.

When considering laser weapons, there are important differences in this
picture due to the longer wavelengths of the radiation. The time scales, for
a single pulse, are still short. However, the deposition thicl.ness is very
small and, as a result of the very high energy densities, it will vaporize and

"blow off" on a short time scale, which can have a significant quenching effect
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on the energy deposition itself. In this case, there can be important inter-
actions between the thermodynamics of the material, the resulting wave actions,
and the energy deposition itself, For that reason, multiple and rapidly pulsed
weapon outputs are under consideration. The tools to be developed here must

be able to handle this important case,

1.2 The Initial Thermodynamic State

The result of an analysis of the energy deposition and radiation transport
is a specified physical state for all material points in the structure as a
function of time. As was discussed, the time scale of this phase of the
problem is typically very short and, for the present, will be considered to be
, instantaneous.

The "physical state' means the thermodynamic state. The nature of this
state can be described by referral to a typical phase-state diagram for a
material. Figure 1 shows a typical temperature-density plot of all equilibrium
thermodynamic states for a metal. The boundaries between the solid, liquid,
and vapor phases are shown. Also shown is the locus, of points at a constant
one-atmosphere pressure. Along that locus, the melt and vapor points are iden-
tified. The critical point and triple line are also indicated.

Only certain parts of this diagram are of importance toc the present
analysis. A typical material point is initially at standard temperature and
pressure. For clarity, Figure 2 will be used for this discussion; this
initial point is labeled as point A.

For instantareous energy deposition, the temperature (and also the internal
energy) is suddenly increased. Since there is insufficient time for material
motions, the material will remain at constant mass density. Consequently, the
material point will achieve the state at point B, a point directly above point
A. Depending on the magnitude of the energy absorbed, this point can be well
into the liquid or vapor regions. However, since the mass density remains at
the initial value, the pressure wili be very high., As an example, point B is
shown along a one-megabar pressure line, corresponding to a point typically
well above the critical point.

We will discuss in detail the subsequent material motions and wave propaga-
tions that result from such initial states throughout a structure. A material

point will not remain at point B, but the material will expand and the pressure
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g will reduce eventually back to normal pressure. Since these motions occur
after the energy deposition, they are adiabatic and, as a consequence, the
path followed in this thermodynamic phase space is along an isentrope. A
typical isentrope from point B is indicated. The one shown happens to

intersect the vapor-liquid dome, but it will not if point B is at a

sufficiently high temperature. The final states of the material will
ultimately be at very low densities, and the material will be hot and expanded.

This discussion serves to identify the thermodynamic description and model
that is needed for the initial deposition phase for an analysis of the type
studied here. A relatively precise description of all states at nominal and
lower densities is needed. A model of the phase boundaries and the shape of
the pressure curves and adiabats (isentropes) in this region is also needed.

Subsequent wave motions can introduce further states. In the case that a
layer of surface material vaporizes and blows off at high velocity, or a thin
layer of material is spalled off, then a shock wave will be generated that
propagates into the interior of the structure. This shock wave is similar to
one that would be generated by an impact at the surface, The resulting shocked
states lie along a Hugoniot curve centered at the initial point of the
material. A typical Hugoniot curve from the standard temperature and pressure
is also shown in Figure 2. We can see that these states are at higher than
normal density and temperature.

In the case of composite materials, specific data on these thermodynamic
states are very sparse. In the present Phase I study, a thorough literature
search has not been conducted, but preliminary investigations uncovered only a
very few thermodynamic properties, including only the initial density, the
Grineisen parameter, the wave speed, and thermal expansion at standard
temperature and pressure., No data were found on temperature states above a
few hundred degrees, and none describing phase-change mechanisms. Clearly,

before we can have sufficient confidence in energy deposition studies, much

more work is needed in this area: both analytical descriptions of the )
thermodynamics of composite materials and experimental tests to verify and
calibrate those analytical models. The additional features arising from the

multiple-constituency of the composite materials will also require further

investigation.
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1.3 Typical Wave Profiles

To understand the compdter results to be shown shortly, we first describe
the general nature of the stress pulses that will arise in the cases of rapid
thermal pulses. 2n idealized description is given here, followed by a
presentation of some actual code output that includes all of the real physics

of the problem.

For an idealized case, consider a P

plate of thickness t in the x direction.,

We may assume that there is an (::)
instantaneous triangular uniform energy
deposition at the free surface of that
plate, with the maximum value at the
surface and dropping linearly Lo zero
at some depth h less than t,

There js a resulting high pressure
in that deposition region that produces
an initial pressure profile as shown in
sketch 1. * h - x

The general effect of this initial

state can be understood by considering

the special case of a linear elastic

material for which superposition holds.

In that case, the bal: ice of linear

momentum reduces to the well-known one- (::>
dimensional wave equation. If the

pulse is not near the free surface,

then the initial pulse shown above

would split into two equal parts, one

traveling to the right at the wave

velocity ¢, and one to the left. Thus, N\\
a short instant At later, these two \\\
waves look as shown in sketch 2,

However, there is a fres surface at

x = 0 to consider. The condition that A -

the pressure be zero at x = 0 is satis-

fied by adding a third wave, opposite to
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the part traveling left in shape and (::)
sign (ska2tch 3), that will at all
times cancel that compressive pulse.
The result of these three waves at
the time At is shown in sketch 4.

After the pulses all clear the
free surface, the result is a

classical "N-shaped" wave as shown

in sketch 5. Therefore, in this
simplistic analysis, we can see
that the net effect of an initial .

triangular energy deposition is a

wave with a triangular compressive

front followed by a triangular

tensile tail of equal magnitude.
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This analysis assumes instantaneous energy deposition. A slightly modified
picture occurs when the deposition time t is not small compared to the pulse

depth h divided by the wave speed c, In that case, for the same total energy

and deposition depth, the final wave after deposition time will have a reduced

b peak and will have a total spatial width of h + cto. However, there will still

be a following tensile tail of the same magnitude as the compressive front.
Real materials are not linear elastic, particularly at the high temperature

and pressure states encountered during the energy deposition phase. The most

important feature of nonelastic actual behavior will be a finite tensile
strength, due either to the inherent strength of the solid, or due to the
reduced strength of a vaporized or partially vaporized state.

Assume, for example, that the energy deposition magnitude is such that the
peak compressive stress in the above sketches is 5 kilobars, and that the
tensile spall strength is 1 kilobar, Then, at some time between the first
growth of the teasile tail at the free surface and tke time when the N-shaped
wave would have left the free surface, the tensile stress at some distance in
from the free surface will reach 1 kilobar, and tensile spall will occur.
Indeed, with the values stated in this simple example, that initial spall
thickness will be exactly one-fifth of the deposition depth h., That reduces
the stress at the spall plane back to zero, and a tensile pulse will again
begin to grow, resulting in a second spall of equal thickness. In the final
analysis, the resulting wave propagating into the structure will have a tensile
tail, but limited in magnitude to the tensile spall strength. In the example
here, that tail would be limited to 1 kilobar.

The final stress wave profile will, of course, depend on the exact nature
of the energy deposition. In a one-dimensional thermoelastic analysis neglect-
ing vaporization and tensile strength, Paramasivam and Reismann (1986)
(Reference 7) find a similar compressive/tensile wave resulting from a

Gaussian deposition in space and time.

1.4 Assumptions
A complete analysis of this complicated thermomechanical problem is beyond

the scope of this Phase I work, but there are a number of assumptions that may
be made for the problem to become tractable for analysis. First, we tacitly
assume that the energy flux is large enough to vaporize the first few plies

but is not sufficiently strong to vaporize to a significant depth in the
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plate. If we assume that the delamination does not reside too close to the
upper surface, then the effects of the delamination will not be strongly
coupled to the shock wave initiation. Hence, the interaction of the stress
wave with the delamination may be treated separately from the physics of its
initial generation., Furthermore, if we wish to analyze the stresses at the
delamination in a planar setting, we are forced to make some assumptions
regarding the areal extent of the energy deposition and the geometry of the
delamination., We may assume either that the energy is uniformly distributed
over an area much larger than the characteristic width of the delamination, or
that the energy is deposited uniformly over a thin but very elongated region.
The first assumption seems more realistic, but the second allows us to study
effects related to the position of the energy deposition with respect to the
delamination. The delamination itself must be regarded as having some large
extension down the plate. In other words, the delamination is a long cavity
with small width and even smaller thickness. With these assumptions, the
deformation is uniform along the long axis of the delamination (and the energy
deposition area), and the plate exists in a state of plane strain (Figure 3).

The assumption of a large uniform energy deposition further reduces the
dynamics of the stress wave propagation to a one-dimensional problem, since the
effects of the crack do not interact. Also, since the uniaxial stress-strain
relation is independent of the ply orientation, the stress wave propagates as
in a homogeneous material. It is only after the stress wave interacts with
the delamination that the orthotropic, nonhomogeneous properties become
apparent. Accordingly, if we assume that the initial stress wave is entirely
compressive, and the closed delamination cannot slip (infinite friction), then
the compressive wave will pass through unchanged.

With these assumptions, the problem may be apprcached with the two existing
codes, FEAPICC, a two-~dimensional, finite element code for propagating cracks
between differing anisotropic materials, and WONDY, a one-dimensional, finite
difference code modeling the thermomechanics of the energy deposition. Before
moving on to a discussion of the simulations using these codes, the next

section presents more details of the theoretical model.
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2. THE{ETICAL DEVELOPMENTS
2.1 Continuum Mechanics Overview

We present here a brief description of the continuum model with emphasis
on particular aspects that relate to the deposition of energy in composite
lamioates.,

The motions are governed by the general equations of continuum mechanics,
as are used in all studies of fluid, solid and structural mechanics. The
computer codes used in this and other studies transcribe those equations intc
an approximate form suitable for solution on a computer.

The equations are recorded here in Lagrangian form. The position of a
material point in a reference Lagrangian coordinate system is dencted by 5?.
The spatial position x is then a function of E? and time t:

X =x (§°, t) . (1)

A variety of kinematic definitions include those for

Velocity: v = é

Acceleration: a= i

Deformation gradient temsor: F = ~Q£ (2)
Velocity gradient tensor: L= é 2-1

Stretching tensor: 2D = L + LT

. . . . o .

Here the superposed dot denotes the material time derivative and | is the del
operator with respect to §°. The stress tensor is denoted by g, which, to be
precise, is the first Piola~Ki-chhoff tensor related to the more standard

Cauchy stress tensor T by the reiation

g=J31 (DT (3)
with

J=detF . (4)
The pressure p is given by

p=-1/3trg . (5)

Using the symbol p to denote the mass density and P, the density in the
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reference configuration, the balance of mass can be written as
L ]
p+ pVy=0 (6)

the balance of linear momentum as

0 = .
Veg+pb=pa , (7

and, finally, the balance of energy as .
pe = tr(TD) - JYeq + pr , (8)

where b is the body force, q is th: heat flux vector and r is the deposited
energy per unit mass.

These eyuations are supplemented by the constitutive equations describing
the material. There is a relation between the internal energy e, the density p

and the pressure p, which we write as

p = ple, p) (9)

While this single equation of state form is sufficient to describe completely
the thermodynamics, it is more common to also include descriptions for the

temperature T and entropy n:

T = T(e, p)

(10)

n= nle, p

Then these three thermodynamic equations can be solved to use any two thermo-
dynamic variables as independent. The discussions of the previous section used

T and p; the corresponding forms are given by

p = p(p, T)
e =e(p, T) (11)
n=nlp, T

and constant pressure or constant entropy states lie along some curve in p - T
space as described above. Phase boundaries Lecome curves in this p - T space. ?
To complete the description, a relation for the shear stress components is

needed. This usually takes the form of equations for the stress deviator tensor:

g

G=9g-P& - (12)

Relating the rate of change of % to the stretching tensor D via a shear

modulus G 15 usual. The shear modulus G can depend on the thermodynamic state,

12
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é; i.e., the temperature and density. Plasticity relations are used to limit the
%{ values of the stress deviators when plastic flow occurs; the yield strength Y is
) also dependent on the thermodynamic state, Polymeric materials of composite

:2 structures may require more general and time-dependent models. Again, little is
§§ presently known about suitable models. The most that appear to be availatle are
Qk . quasi-¢ :atic dependences of strength and stiffness versus temperature, and only
! to the few hundred degrees for which composite waterials maintair their primcry
’gj . structural integrity. Finally, fracture criteria are needed to describe spall
g: (tensile failures) &nd, in the case of composite structures, ply delaminations.
5? It is clear that there is an imposing amount of information that goes into

the final solution of these problems. Fortunately, there are well developed

ég and tested finite difference codes, such as the one-dimensional code WONDY and
$i the two-dimensional code CSQ that have been used in the present program.

éﬁ Provisions for a number of different material model types are available, as

'ﬁ well as both analytical and tabular descriptions of the thermodynamics,

f% including complete three-phase boundary descriptions and transitions. At the
&%’ present, for normal wave-propagation studies, it must be said that the models
%g are better developed than warranted; however, the experimental data to provide
i inputs to these models (or even to simply discover what type of a modzl is
éﬁ appropriate) are lacking, Furthermore, even for generic input models, the
gﬁ effects of composite laminations or delaminations on the wave propagation
5 mechanics has not been considered. It is, of course, that issue that is the

. primary focus of the present study.

3
$$, 2.2 Singular Finite Element Formulation
gg In the present study, singuiar finite elements are used near the tip of a

- delamination crack to account for stress singularity at the crack tip. These
:é elements incorporate stress and displacement fields from the closed-form

L g
S

solutions and therefore are extremely accurate and efficient, The singular

e

elements are then combined with the regular isoparametric elements in the

e

g

surrounding region so that the standard finite element procedures can be used

‘o g O
Tl
N

£$ to obtain displacement at each node.

ﬁ& The development of singular elements is based on a hybrid functional

X derived in Tong et al. (1973) (Reference 10). This hybrid functional was used
'; by Lin and Mar (1976) (Reference 5) for the study of bi-material crack problems
éﬁ_ and recently by Aminpour and Holsapple (Aminpour, 1986) (Reference 1) for the
i

W 13
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dynamic analysis of cracks between two anisotropic materials., For a two-
dimensional continuum divided into m elements, the hybrid functional can be

de”ined as

m=Jn (13)
where
tl -
n = Leg+ c® - push + = paei | av ‘
m 7 £94 ¢ L2t 7
t Y (14)
o m
+ (u -~ v)erds - t_x_iids it .
S. S
in o

In the above, g, € g?, and u are the stress, strain, thermal stress and dis-
placement, respectively., Otner variables are the body force b, the density p
and the tractions Tt and E on the boundaries. The displacement v along the
interelement boundary Sin is astumed independently of the interior displacement
u. The constraint integral over Sin is added to enforce the continuity of the
displacements between the singular element and a regular element that uses
different interpolation functions for the displacement components.

Making use of the stress, strain, and displacement fields obtained from the

closed-f wm solution of a semi~infinite crack, we can assume

u = Ut

0 =
g=AER + g (15)
T=R8

where the B's are unknown constants to be determined from the finite element
solution of the overall problem.

1f the field variables in Equation (15) are used, then all elasticity
equations are satisfied exactly at any time t, and the volume integral in the
hybrid functional can be reduced to a boundary integral. The Euler equation

for the variational functional is simply

on §.
in

and (16)

= neg on S

133
1<

IRy

where n is the normal vector.

The interelement boundary dis;lacement u can be assumed in the following form:

u=Lgq a7

~
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in which g is the nodal displacement vector, and L is chosen such that u is
comyat. +le with the surrounding regular elements. For example, L may be
chosen to vary linearly between two nodes along the interelement boundary if
constant strain elements are used in the surrounding.
Substituting the assumed quantities from Equations (15) and (17) into
the hybrid functional and taking the variation of the functional with respect
. to B, we obtain (Aminpour, 1986) (Reference 1)

R=Bgq with B= g'lg (18)
and t1
_ 1 T 1 oT o oT T
LI / (gaﬁa-aam-a!ra*:) dt (19)
t:0
where
K = BHB - BIM.B - BIM B - 2BM, 5
T S I L 1
M= BB
(20)
T, & T
V=EBMB +BMB
F=BF
~ -~ ~s .
Tt 2 remaining matrices are defined as follows:
i / E'AE dv
v
m
=/ (Ul gb - Eo®) dv
~s -~ ~ ~
v
m
1 f §7a] av
v
m
T
M =/ U pU dv (21)
~2 ~ Fa
v
m
M =/ 0Tou dv
m
cz=/ R'L ds
S,
in
» P / R'Y ds
it “in

s

s
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in which the dots denote the time derivatives and A is the stress—-strain

relation matrix. The matrix E is defined as

3
T
E = 0o & v . (22)
~ W ~
a9
3y ax

In Equation (19), K is the element stiffness matrix, M is the mass matrix, V

is the damping matrix, and F is the element force vector. These quantities

can be assembled with regular elements using standard finite element procedures.
The summation of L in Equation (19) over the entire domain and the use of
variational theorems will yield the following governing differential equation

for elasto-dynamic problems:
Mg + Vq + Kq = F (23)

where M, V, K, and F are assembled quantities. Although there is no damping
considered in this problem, the matrix V, called the "pseudo-damping' matrix, is
present. Also, for a propagating crack, the matrix M is symmetric, while the
matrices K and V are not, as can be seen from Equations (20) and (21). For a
stationary crack, the matrix V vanishes and the matrix K becomes symmetric. The
existence of the pseudo-damping matrix V and the nonsymmetry of the K matrix
occur only in the formulation of singular elements. These complexities arite
because the eigenfunctions for the singular element were derived with respect
to a moving local coordinate system at the crack tip; therefore, the matrices
M, V, and K are functions of time.

The derivations of element stiffness and mass matrices for the surrounding
regular elements can be found elsewhere, for example, in Aminpour (1986)

(Reference 1).

2.3 Strain Energy Release Rate

The strain energy release rate is defined as the energy released per unit
of new crack surface generated by a propagating crack. For a general two-crack
problem, the strain energy release rate can be expressed by the following crack

closure integral (Lawrence and Masur, 1971) (Reference 3):

)
G,r = lim %‘/[ {-% oz(x,O)[w(x-G,O)] + sz(x,O)[u(x-G,O)] dx (24)
0
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where the first term in the integral can be defined as G1 (mode 1) and the

second term as (i, (mode 2), The stresses are evaluated at a distance x ahead

of the crack tip and the corresponding displacements sare calculated at a distance
§ - x behind the tip of a crack.

In the preseut study, the stress and displacement are obtained from an eigen-
function expansic: method with each term accurate to a constant Bi. The 8
matrix is then determined by matching the local crack-tip solution (singular
elements) with far-field solutions (regular elements). Once B's are found, the
stresses and displacements are known, and Equation (24) can be integrated
numerically. Note that since the stress or strain is oscillating near the tip
of an interface crack between two different materials, the G1 and G2 results as
obtained from Equation (24) generally depend upon the § values chosen (Froula
et al., 1980) (Reference 2)., Therefore, the usefulness of separate Gy» G,
values for bi-material crack problems remains to be studied. However, the total
strain energy release rate G,r has been shown to be independent of § (Walker
and Lin, 1987) (Reference 11).

2.4 Plane Strain
Consider a lamina whose fibers lie in the XY plane as shown in Figure 3.

Consider this ply to be a monoclinic material with a stress/strain relation of

the form
([ \ T - ()
€ 511 812 513 0 0 Sy¢ Oy ol
€ S12 S22 S35 0 0 Sy Iy %
€ S., S.. S.. 0 0 S o
< 2 >= 13 "23 "33 36 z +< % >'r (25)
Yy 0 0 0 5, 8, 0 T, 0
Yxz 0 0 0 345 SSS 0 Txz 0
\y ) 516 S26 36 O 0 See Tey \ %

where Sij is the compliance matrix and oy is the coefficient of thermal expan-
sion., Here, we use the contracted notation for stress and strain and T is the
temperature above the reference.

Assume that the deformations are independent of the X direction so that
&= Yz = Yy 0 (26)

for which we may solve for stresses acting on the X face.
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oy = § (516526 = 56651229 * (516536 = 5651379, * (51605 = Sge)7
Tey ~ T G- S115267% * (516513 = S3651100, * (1% ~ S1y9)T  (27)
o = . lks
X2 Sg5 2
with
4781156 St - (28)

Substituting these expressions back into the three-dimensional stress/strain

relations and adopting the two-dimensional stress/strain definition as

( p L ( \ (
ey b11 b12 0 cJy ay
< Ez >= b12 b22 0 < O'z >+< az >T > (29)
sz i 0 0 b33d yz 0
then / \ \ /
b,, =8,, +(28.,.5,,5., -8 52 -8 52 )/d
11 22 12°16°26 66°12 11°26
bon = San + (2 S5,.6,.5., - 8 s2 -8 32 )/d
22 33 13°16°36 66”13 11°36
by = Sp3 % (516512536 * 516526513 ~ 566513512 ~ 511526536/ ¢
(30)
b..=8 , -8/8

33 44 45 55

- 8 -
. (826816 866512 , (512316 826811)
vy - % * d G

s 338818 " See®i3 ) (B13%16 T 836’
(!z Ot3 (11 a6

Note that under the plane strain assumption, the material behavior becomes

(o3
i
[=%

(=9
a.

orthotropic. This is as expected, since, depending on the orientation of the
fibers, the YZ plane cuts the fibers in circles, ellipses, or straight lines,

as seen in Figure 4.
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Figure 4. Plane Sections of a Laminate
The inverse reiationship is given as
(Y T . ( )
O’y a1 3y, 0 ey - ay'r
= - T (31)
{ % > 819 837 O < €7 % )
Tyz L 0 0 a4 sz
where \ o /
s = -b
31 = by,/ ) 1272

bl . (32)

a8 =by,byy =y,

8y = byyfa  ayy = 1/bgy
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3. FIRITE ELEMENT VALIDATION TEST

In order to carry out this study, the FEAPICC code was transported from a
CDC 60-bit computer to the Apollo 32-bit machine. This necessitated converting
the code from single precision to double precision. However, since no double~
precision complex arithmetic is available on the Apollo, most of the singular
element computations were left in complex form with no apparant loss in
precision. Conversion to double precision was especially important for dynamic
problems and problems with many unknowns.

In addition to these conversion problems, new theoretical developments and
applications and new 1/0 formats necessitated other modifications that required
testing. This section documents tests performed to validate the accuracy of
the code.

3.1 Singulat Element Test

This section investigates the accuracy of the singular element when its
dimensions become small compared to the size of the delamination. A typical
ply thickness of a composite is on the order of 0.005 inch, while the delamina-
tion itself may be as large as 1 inch. Although nondestructive tests would
rule out such a large delamination, it is conceivable that a delamination could
grow to such lengths under normal operating conditions. To represent the
stress variation properlv, one or two elements would be required to lir within
each ply. We find that the ratio of the crack length to the singulec element
size may be very large. A simple static analysis shows that the stresses grow
by the square root of the ratio of the crack length to the dis~
tance to the crack tip. If the singular element occupies such a small region
around the crack tip, this means that regular isuparametric elements next to
the singular element must resolve large stress gradients.

0'Leary (1981) (Reference 6), in a one-dimensional error analysis and
supporting numerical studies, shows that as the singular element becomes small,
the error, in the energy norm, converges to zero. However, the rate of conver- ‘
gence suddenly slows after the singular is reduced below a certain size. The
rate of convergence then becomes that which would be expected if no singular
element was employed. The error in the stress intensity factor shows similar
behavior except that no convergence is obgerved after the singular element is
reduced below a certain size. In any case, the errors were significantly

improved by the use of the singular element over computations that employed no
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singular element, and no degradation of accuracy was observed as the singular
element became small., This study leads us to be optimistic that the small sin-
gular element, in our more realistic two-dimensional cracks between different
materials, would also be well behaved. To confirm this, we studied a model
problem on two different meshes, one in which the singular element is the same
size as the crack, and another for which the singular element is 20 times
smaller. In addition, we have calculated the stresses using an entirely dif-
ferent program (FEAMOD) that employs an element with a singular transformation
to capture the square root behavior (Stern, 1979) (Reference 9). The differ-
ence between this element and the singular element employed in FEAPICC is the
form of the basis functions. Recall that the FEAPICC singular element basis
is the set of the first 16 eigenfunctions forming the exact solution to the
problem. For instance, the basis includes the sinusoidal log r behavior
exhibited by cracks between different elastic materials.

The model problem, shown schematically in Figure 5, is that of a crack
between two different isotropic materials with the upper material 100 times
stiffer than the lower material. Solutions were computed with FEAPICC on the
coarse grid shown in Figure 6 and on the fine grid in Figure 7. The coarse
grid singular element is shown by the shaded region in Figure 6. The fine
grid singular elements is a square one-tenth of the crack length on edge. The
grid for the FEAMOD solution is shown in Figure 8 with the singular element
made up of eight triangular elements covering the area inscribed by a circle
of one crack length in diameter. The isoparametric elements in the FEAMOD
solution are parabolic.

Table 1 shows the stress intensity factors for each of the three numerical
solutions plus the exact sclution of the problem (Rice and Sih, 1965)
(Reference 8). The two FEAPICC solutions are more in agreement than the FEAMOD
solution, which indicates one of two points. This difference may just be

indicative that the stress

Table 1. Stress Intensity Model Comparison

| Mecdel I| Ky ‘1 Ky |
| FEAPICC (coarse) | 1.777 | -0.285 |
| FEAPICC (fine) | 1.809 | =-0.291 |
| FEAMOD | 1.542 | =0.300 |
| EXACT | 1.793 | -0.262 |
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Figure 5. Crack Between Different Isotropic Materials

-

Figure 6. Coarse FEAPICC Grid
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intensity definitions are different for the FEAMOD and FEAPICC singular
element, or it may show a real difference in the solutions. Comparing the Y
normal stress contours in the vicinity of the crack on the exaggerated
deformed geometry also shows some differences in the stress field suggesting
that the FEAPICC singular element gives more well-~behaved results. Figures 9,
10, and 11 show the stress contours for the FEAPICC coarse and fine grid
solutions and the FEAMOD solution, respectively., To plot the results for the
coarse FEAPICC and FEAMOD solutions, the stresses and displacements on the
singular element have been interpolated to much finer, linear elements. The
resulcs of the fine grid singular element have not been interpolated to yet a
finer grid, which explains the weaker contour gradients near the crack tip.
The close agreement between the coarse and fine grid solutions gives us
some confidence that a large ratio of crack length to element length will not
pose any problems. This may be especially true for shock wave problems in
which the shock width may be much smaller than the delamination length.
Hence, the stress concentration effects are localized near the crack tip,
since, to the shock wave, most of the delamination looks like one uninterrupted
free surface. Indeed, numerical experiments, to be described later, indicate

such a localization.

3.2 Thermal Stress Validation

To test the implementation of the thermal stresses in the FEAPICC code, the
singular finite element solution is compared to a simple analytical solution
that has no singularity. The singular solution should be in close agreement
except near the crack. In the problem shown in Figure 12, the temperature
varies linearly across the plate in plane stress. With the loading as shown,

the closed form solution for an isotropic, homogeneous plate is

u=-wx/E+a Toxy/L

(33)

v=0y/E + qa To(y2 - xz)/ZL .

The finite element solution has a small crack of length L/20 starting at

y = L/2, x = 0. Except in the vicinity of this crack, the solution compares
closely to the analytical solution, Table 2 compares the two solutions for
various points on the plate. The displacement at the crack is an average of

the top and bottom surfaces of the crack.
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STATIC CRACK BETWEEN ISOTROPIC MATERIAL H=A
LOADCASE: 1

FRAME OF REF: Gl

STRESS ~ ¥ NIN -S 465-02 MAX: 6.43E+00

A { i
5.05&06‘5 LEVELS: ¢ LYA: 2.90E-04 l.w

Figure 9, Normal Stress FEAPICC Coarse Grid

CRACK TWENTY TIMES ELEMENT LENGTH
LOADCASE: 1
FRAAME OF REF 0BAL
STRESS - Y NIN =7.37E-03 MAX: 3.72€+00

1.0

0.25

1.0

L 1 1 1 1 il J % > 4 1 1 1 1 ) §
5006700 =P DECTA 2 50E-01 PR el

Figure 10. Normal Stress FEAPICC Fine Grid
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FEAMOD SINGULAH ELEMENT
LOADCASE:
FRAME OF REF: GLOBAL
STRESS =~ Y ~1.35E400 MAX: \9.55€+0
1.0
J 2.0
0.25
1.0
L

{ 1 L 1 S . | i S | i . i | o 1

0.00E+00 7 LEV#S. 17 DELXA: 2.50E-01 4.00

Figure 11. Normal Stress FEAMOD Solution

Figure 12. Thermal Stress Test Problem
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Table 2, Static Thermoelastic Test Case Comparison
(L=20, a=1.0, E=1.0, v=0.25, AT = 1.0)

| | | u | v |
x|y | |
| ‘ H EXACT } FEM ‘ EXACT } FEM i
, | -
| o | o | o | o | o | o |
! 5 | o | -i.25] -1.17 | -0.62 | ~-0.50 |
. | 10 | o | -2.50 | ~2.41 | -2.50 | -2.19 |
o { 5 | o | o | 5.62 | 5.57|
s 1 s | o |~-0.07) 5.0 | 5.15]
| 2.0 | 5 | o | -0.10] 3.12 | 3.431|
|l o {100 | o | o | 12.5 | 12.89 |
s | 10 | 1.251 0.94 ] 11,87 | 11.81 |
| 10 | 10 | 2.5 | 2.26 | 10.0 | 10.21 |
| o | 15 | o | o | 20.62 | 21.09 |
5 | 15 | 2.5 | 2.42 ] 20.0 | 20.26 |
| 10 } 15 | 5.0 | 4.89 | 18,12 | 18,23 |
| o | 20 | o |} o | 30.0 | 30.41]
i s | 20 | 3.751 3.831) 29,37 | 29.66 |
f 10 | 20 | 7.5 | 7.58 1 27.5 | 27.61 |

3.3 Static Composite Plate Validation Test

In this section, we investigate the static response of a multi-ply plate
with a centered delamination that has dimensions much larger than the ply
thickness. The objective is to test the proper implementation of the planar
stress/strain relations with a more realistic material model. The grid and
loading for these tests is shown in Figure 13, The plate consists of eight
plies with two elements within each ply. The material properties, typical of
graphite-epoxy, are given in Table 3. Twe composite plates are considered: a
center symmetric plate (s) with fibers lying in the successive plies starting
from the bottom at § = 0°, 45°, 90°, -45°, =45°, 90°, 45°, and 0° and an
unsymmetric plate (u) with successive plies at § = 0°, 45°, 90°, -45°, 0°,

’ 45°, 90°, -45°, The two different composites have been subjected to three
different uniform temperature distributions:

(1) plate at reference temperature, AT = 0 (off);

-0.1°F (cold); and
0.1°F (hot),

(2) plate below reference temperature, AT

(3) plate atove reference temperature, AT
and two pressure loads:
(1) no mechanical load (off) and

(2) a load of 1 psi (on).

27

E6Qﬁ00OQQ006OGDGQ6DﬂQGOGQGOGQGQGOOQﬁQQQOOEM0Q0Q0#9%QQQVQUQQﬁ%QQﬁQQﬂ9RQQﬁQQQQQﬂRQﬂQﬂOﬁQﬂQﬁQV&$i%656hﬁhﬁ*QV?%9¢Eﬂi



0.25"
0.05"
0.04"
0.005"
1 psi
0,025

[-N - a2 2l I o
L B I I

Figure 13. Composite Grid

Table 3. Material Properties Along the Principal Coordinates
of the Fiber Direction

| By = 1.8x107 psi Ep = E3 = L.4 x100 psi |
: vi2 = vi13 = 0.34 w3 = 0.4 p = 0.055 1b/in3 }
{ G2 = G13 = 0.95x106 psi  Gp3 = 0.5x106 psi {
i‘ o = 2.0x1077 (°F)~1 ® = a3 = 1.6x10~3 (°F)"1 I|

The magnitudes of the thermal loads are chosen so that they are approxi-
mately the same magnitude as the pressure loads. Table 4 shows the stress
intensity factors for each ply stacking, pressure, and thermal loading.

It is easy to show that the stress intensity factors behave as a linear
function of the mechanical load and thermal load. Also, the strain energy
release rate is a quadrati. function nf the mechanical load and the thermal
lvad. T7The numerical results in Table 4 indicate that the strain energy
release rate shows a strong coupling between the mechanical load and the
thermal load. This implies that the strain energy resulting from a combined
mechanical and thermal load is not simply the sum of the strain energies of

each load independently.
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Table 4. Static Composite Ply Stress Intensity Factors

-

| I I I ¥ I Ky I 6 | 6 | ¢ I
| ply | mech | thermal | x10-1 | «x10°! | =x10°7 | x10°7 | xi0™7 |
| stack | load | loading | psi in | psi in | 1b/in | 1b/in | 1b/in |
: s _l on {- off ; 7.14 :--— 0 } 5.46 } 0 { 5.46 {
; u } on } off : 6.63 : 0.608 : 5.27 : 0.171 ; 5.45 {
} s : on--= cold ; 8.88 { =5.47 : 9.05 } 1.65 } 10.7 {
: u } on } cold : 8.64 { -1.66 : 8.45 } 1.64 ‘ 10.1 {
: s } on ; hot # 5.40 : 5.47 } 2.76 } 1.65 } 4,41 }
: u : on : hot : 4,61 : 2.87 : 2,83 : 0.202 : 3.03 :
:—--;---:- off :—-cold :-_ 1.7;—-: =5.47 : 0.448 =_-{.65 : 2.10 {
: u : off : cold : 2.02 : ~=2,27 : 0.366 ; 0.751 { 1.11 }

3.4 Dynamic Composite Plate Validation Test

Before moving to the actual simulation of the stress pulses generated by

laser heating, we examine in this section the stress wave propagation generated
by a pulsed tensile loading on the surface of the plate. We chose a pulse
loading that is characteristic of that produced by pulsed laser after the back
free surface reflection. The grid shown in Figure 13 and the symmetric stack-
ing sequence and material properties described in Section 3.2 are used in this
simulation. With these material properties we find a maximum longitudinal wave
speed of 3.6x10S in/s along the fiber direction. The transverse longitudinal
wave speed is about 1.Ox105 in/s, while the shear wave speed ranges from

0.6xlﬂ6 in/s in the 0° ply to 0.8x105 in/s in the 90° ply. Since the

9

| smallest grid dimension is 2.51{10-3 in, a step size of 5.0x10 ° s allows

the fastest wave to traverse less than one element in one step.

Er In our simulations we noted severe oscillation problems with a square
tensile loading pulse wave. These oscillations are characteristic of the
element's inability to resolve the sharp front of the wave, To remove this
effect, we selected a hat-shaped pulse loading in which the loading increases
linearly with time until some maximum is reached and then falls linearly back

to zero. The time to reach maximum loading is set to 2.0x10-'7 s. This produces
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a stress wave within the body that rises and falls within eight elements or
four ply widths, and the oscillations are only modest. Ratios of half-
wavelength to element size smaller than four show marked oscillatioms
regardless of the step size using the Newmark method. The Wilson method with
its inherent numerical damping proved to be only a slightly better option,
since little damping was apparent fcr small time step sizes and too much ’
damping or loss in accuracy was observed for the larger step sizes, These
wave resolving restrictior.s have some important implications especially for
sharp laser pulses in three-dimensional simulations, which we discuss further
in Section 6.

In Figures 14 through 23, we show the stress contours at different times
for the simulation of the symmetric plate., These contours are plotted on the
exaggerated deformed geometry. Since the tensil2 load at a maximum of 1.0x106
psi is applied uniformly across the top surface, the stress wave is very
uniform before it interacts with the delamination. 1In Figure 14, we see the
normal transverse wave at a time just before its head reaches the delamination
and before the end of the boundary loading pulse, Note that the delamination
(marked by the line ending with the asterisk) is assumed closed initially.
Although the delamination is initially in the center, the tensile deformation
in the wave has stretched the top plies in this exaggerated plot., 1In
Figure 15, the transverse normal stress is shown as the maximum stress passes
in front of the crack. We see that the delamination has opened almost
uniformly across its length. Also, we see the first signs of a compression
wave reflecting off the free surface of the delamination. Five hundredths of a
microsecond later (Figure 15) the compression wave is more fully developed, and
still later (Figure 17) we see the interaction of the compression and tensile
waves with the upper and lower surfaces. The stress intensity factors labeled
on each plot show that these peak wher both large compression and tensile
stresses are near the crack tip. The shear wave propagates in a characteristic
antisymmetric profile as shown in Figures 18 through 20. The time sequence of
the longitudinal normal stress shown in Figures 21 through 23 indicates the
dramatic effects of fiber stiffening. In the 90° plies the fibers are running
parallel to the long axis. Since the waves travel over 3 times faster in 90°

plies, we see that the contours seem to spurt out in these plies.
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LOADCASE: 18 TIMESTER: 18 TIME: 0.00000015

FRAME OF AR 6LUSA

STRESS = Y MITE -3, 176403 HAX: 0.81E404 1
R = 48210

lz = 3.0

7.0

7.0

1.0

L) 1 i 1 1 1
7 TEVELE 16 BELTA Z.006+54 3 oeT

Figure 14, Normal Stress (t = 0.15 s)

LOADCA?‘E. 0 PMESTEPSO TIME: 0.0000003

LOBAI
STRESS ~ ¥ NXN ~2.26E404 MAX: 4.00E+0% 3

‘1 = 8.4x10

K, = -3.1 = 10!

-1.0 1.0

-

(5.0

[~

| 1 i 1 1 1 1
-B.00E+04 Levmmooa 9.06‘&0!‘

Pigure 15, Normal Stress (t = 0.3 us)
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LOADCASE: 35 TIMESTEP: 38 TIngE: 0.0000001%
FRAME DF REF. 6

. GLOBAL
STAESS = Y MIN, -8.05€404 RAX: 8.43E+04 K, - 8.7 10°

1
‘2 “ =2.2x10

Y
}
L 1 ) 4 1 )| 1 1 1 1
S5 -60e704 TEVEL 16 DELTA Z.00E704 oo0evoT

Figure 15. Normal Stress (t = 0.35 s)

LOADCASE: 40 TIMESTEP. 40 TI%E: 0.0000004
FRAME OF REF: GLOBAL

STRESS - Y MIN: -8.85E+04 MAX: 0.98E+04 3
K - 6.6 x 10

K.

2-5.2

% : . : LS 10 DELTA 200604 500801
~9.00E404 LEVELS: 1 Al 2.00E+04 9.0

Figure 17. Normal Stress (t = 0.4 us)
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8 LOADCASE: 30 TIMESTEP: 30  TINE: 0.00000C3
W FRAKE OF REF: GLOBAL
¢ STRESS - XY MIN: -2.43E¢04 MAX: 2.36E+04

e
<

I
A C ] 1 T I 1 Ly
R -2.70E+0A Levﬁm: z.TGM

Figure 18, Shear Stress (t = 0.3 us)

" LOADCASE: 35 TIMESTEP: 35  TIME: 0.00000035
bl FRAME OF REF: GLOBM.
g STRESS - XY MIN: -3.72E404 MAX: 3.67E404

-
[~

ol e — a5 s s ook —— . I

& Figure 19, Shear Stress (t = 0.35 us)
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LOADCASE: 40 TIMESTEP 40 TINE: 0.0000004
FRAAME OF REF: GLOBAL
STRESS ~ XY MIN: -3.08E404 MAX: 3.04E+04

L 1 1 1 1 1 A 1
—ZT0Ev04 TEVELS 10 DELTA 6.00E703 T ToRkTT

Figure 20. Shear Stress (t = 0.4 us)

LOADCASE: 30 TIMESTEP 30 TIME: 0.0000003
FRAME OF REF: GLOBAL
STRESS ~ X MIN: -4.589E+04 MAX: 3.4B8E+C4

Yy

1
t 1 1 1 1 i 1 1
-4.50E+04 Lev'éfﬁ 13 DELYA; 1.00E+04 ‘.w&v}

Figure 21. Longitudinal Normal Stress (t = 0.3 us)
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LOADCASE: 35 TIMESTEP: 35 TIME: 0.0000003%
FAAME OF REF: GLOBAL
STAESS ~ X MIN: ~4.41E+04 MAX: 4.57E+04

Y
1
1 1 1 1 1 1 — J 1
R TEVECS 10 OELTA 1006704 T SoekTT
Figure 22. Longitudinal Normal Stress (t = 0.35 us)
LOADCASE: 40 TIMESTEP: 40  TIME: 0.0000004
FRAME OF AEF: GLOEAL
STRESS - X MIN: -3.55E404 MAX: 3.73€+04
M
| . 1 A . J il | 1 ; ?
~4.50€404 LEVELS: § A 1.00E+404 4.%0

Figure 23. Longitudinal Normal Stress (t = 0.4 us)
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4. SIMULATION OF THE STRESS WAVE INITIATION AND PROPOAGATION IN ONE DIMENSION
A number of finite difference solutions to the complete problem of energy
deposition and subsequent motions were obtained. The code WONDY (Lawrence and

Masur, 1971) (Reference 3) was utilized to obtain these results, A 20-layer

composite laminate was divided into a total of 400 zones, with 20 zones in

i £

each layer. The total thickness was 0.1 inch, or 0.254 cm; each layer was

thien one-tenth of that thickness. The mass density of the material was 1.568

gm/cm3, which is typical of an epoxy-graphite material (Froula et al., 1980) ;
(Reference 2). The sound speed was 3.02x10° cm/s (Lee, 1979) (Reference 4).

A vapor transition was included; the vaporization energy was set at 1011
ergs/gm (Lee, 1979) (Reference 4).

For the solid region, a Mie-Griineisen equation of state was used. The
reference Griineisen parameter was equal to 0.3 (Froula et al., 1980)
(Reference 2). A linear wave speed versus particle velocity form was adopted,
with a slope of 0.65 (Lee, 1979) (Reference 4). Thus, the material did not

have a constant wave gpeed, but the model had nonlinearities.

et M I SRS ndl od kT W LR i i B

For the stress deviator response, a linear elastic model with a von Mises
plastic yield was used. The Poisson's ratioc was 0.44 (Lee, 1979)

3 cm/s .

(Reference 4), which gives a unaxial-strain wave speed of 3.26x10
E Since the behavior for the initial energy deposition and subsequent wave
5 motions is dominated by the hydrodynamic model, it was not necessary to use an
X anisotropic mcdel for this part cf the problem.

The yield stress was 0.5x109 dynes/cmz. Failure in tensile spall was

assumed to occur at 10° dynes/cm2 (14,500 psi).

ww K7 LA

With a longitudinal speed of 3.26x105 cm/s, and a total thickness of
0.254 cm, the total plate tramsit time is 0.78x10-'6 8, or just under a micro-

second, The energy deposition time was set at one-fortieth of a microsecond,

o

or 0.25x107% s. The energy was deposited at a constant rate over this time.

For the spatial distribution, the linear shape discussed in the previous

>

section was used as an approximation to the exponential shape characteristic
of actual depositions. Thus, the maximum energy density occurred at the front
surface, and that energy density decreased linearly to zero at a total depth
of one-twentieth of the total thickness (0.0127 cm or 0.005 inch)., The total
flux was 2x108 ergs/cmz. With the deposition thickness of 0,0127 cm and the

mass density of 1.568 gm, this gives an average initial energy density of

1010 ergs/gm. At the surface, the energy density is therefore 2x1010 ergs/gm.

D o o o )
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| Since the Griineisen is 0.3, an instantaneous deposition of this energy would
create an initial stress of P = (1.568)(0.3)(2x1010) = 9.5x109 dynes/cmz, or
just under 10 kilobars, with a pulse width of 0.0127 e¢m. In fact, because of
the finite deposition time, the actual pulse width is slightly higher, and the
initial stress about half that value,

As discussed in Section 1.3, an initial triangular compressive pulse will
generate a tensile following "tail" as it moves away from the free surface.

As that tail builds in magnitude, tensile spall of the front surface will
occur. Additional spall will occur until the final tensile magnitude decreased
to under the spall strength of 1 kilobar.

Figure 24 shows the actual resultant wave at the time of 10'-7 s, well
after the final wave has moved away from the free front surface. The main
compressive pulse is about 3 kilobars (40x103 psi) at this time and is
indeed almost triangular in shape. At times immediately after the energy
deposition, parts of the front surface did spall as the tensile wave began to
grow. Ultimately, a total thickness one-half the deposition depth was spalled.
The tensile following wave, which was almost a kilobar at the time of final
spall, has at this time decreased to about two-thirds of a kilobar.

This result illustrates the important effects of the material
nonlinearities and especially the effects of the spall response. It is x. 2
worthwhile noting that, in this particular problem, the initial energy
densities were below the vaporization energy (1011 ergs/gm) by a factor of 5.
If the energy flux had been greater, the material near the free surface would
have been vaporized, and the tensile strength would have decreased to zero.

The wave shown in Figure 24 propagates into the interior of the plate.

Since the material is nonlinear, the stress pulse will decay in magnitude and

broaden in width. For example, Figure 25 shows the resultant wave at the time
of 0.7x10m6 s, just before it reaches the back free surface of the plate,

At this time, the peak compressive wave has decayed to 30,000 psi, and the
tensile portion has decayed to less than 6000 psi. The pulse is almost twice

as wide as it was initially,
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Figure 24, 1Initial Fully Developed Stress Wave (t = 0.1 s)
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Figure 25. Stress Wave Just Before Free Surface Reflection (t = 0.7 us)
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5. SIMULATION OF THE STRESS WAVE INTERACTION WITH A DELAMINATION

As the stress wave reflects from the wall one would expect the surface
plies to spall. To simulate such an event, we model the four plies adjacent to
the surface. In the middle of these four plies is a small delamination with a
half-length of 0.025 inch. The grid is the same as that used in the previous
composite simulations (Figure 13), but the dimensions are reduced by half to
give four elements per ply. The initial conditions are taken from the one-
dimensional simulation at a time just before the reflection of the wave but
just after the compressive part of the wave passes the delamination. The top
and bottom surfaces are both considered stress-free, Since the stress wave
lies ithin about two plies, the bottom surface observes essentially no stress
from the time the compressive wave passes over until the time the reflected
tensile wave returns. It is during this time frame that we have conducted a
series of simulations varying the ply stacking sequence, plate temperature,
crack geometry, and boundary restraints. Table 5 gives a summary of the test
cases and the maximum fracture intensity values observed over each simulation.
In the first six cases we vary the stacking sequence and observe that the
maximum fracture parameters vary little from case to case, Even though the
loading is not symmetric, the plates wich delaminations between similiar plies
oW DPlates with delaminations between dissimilar plies
show a small mode II effect, but still it is minor compared to a mode 1
fracture. The mode 1I strain energy release rate is especially small because
the differential in the deformation tangent to the crack is small., Since the
mode I strain energy release rate is defined primarily by the Young's modulus
of the matrix, this parameter varies little with the ply sequence.

Wang et al. (1980) (Reference 12) found that, since the curing temperatures
are so high (300°F), the thermal stress at room temperature is an important
consideration when evaluating the strain energy release rate. To test this
effect, in case 7, the plate is assumed to be 200°F colder than the reference
temperature, Ir comparison to case 1, a significant change in the strain
energy release rate is seen, indicating that the ambient temperature of the
plate plays an important role in defining its fracture resistance. In this
simulation, we assumed that the temperature of the plate suddenly dropped
200°F. This may give rise to some unwanted dynamical effects near the

constrained regions of the plate. Since the delamination is removed from
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Table 5. Dynamic Parametric Tests

| | I K Kg | 6 Gy ¢ |
| piy | | x103 x103 | i
# case sequence | comments | psi in | psi in g 1b/in | 1b/in | 1b/in {

I —-——
| 1 0/90/90/0 | 1.65 0.009 | 2.4 0 2.44 :
|- | |
| 2 90/0/0/90 | 1.28 -0.004 | 2.31 0 2.31 |
| | | |
| 3 0/0/90/90 I 1.36 -0.62 | 2.40 0.23 2.42 | .
| | -] |
| IA 90/90/0/0 | 1.33 0.61 | 2.30 0.22 2.32 |
| | | |
I | |

| |

| |

|

| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | !
I | | |
| | | |
| | | |
| | | |
5 | 0/90/0/90 1.33 | 0.60 2,29 | 0.25 | 2.32
I | | |
I | | I
I I | |
I | | I
I I | |
I | | I
| | | |
| I | |
| I | |
! | | |
| | | |
| | | |
| | | |

|

I
| 6 90/0/90/0 1.36 -0.61 2.40 0.26 2.43 |
| — - -] |
| 7 0/90/90/0 | cold plate | 1.23 -0,062 | 1.44 0.01 1.45 |
R B e e et | | |
| edge | | |
| 8 0/90/90/9 |delamination| 1.65 -0,015 | 2.44 0 2.44 |
| -] | |
| 9 0/90/90/0 |constrained | 1.24 -0.73 | 1.38 0.15 1.53 |
| =mm e | e | I | |
| 10 90/90/0/0 |constrained | 0.998 -0.33 | 0.92 0.50 1,13 |
| | | -- | |
| 11 0/0/90/90 lconstrained | 0.797 | -0.10 | 1.38 0.17 1.55 |

these constraints, we expect that these effects are minor. In case 8, the
delamination is assumed to reside on a free edge of the plate. Note that the
fracture parameters changed very little. This is somewhat surprising since,
in static tests, the edge delamination is much more apt to fracture.

The reason these dynamic tests do not show this behavior can again be
attributed to the pulse wavelength to delamination length ratio., The tip of
the delamination is initially unaware that the free surface is nearby. The
free edge effects would be apparent only for delaminations on the order of the
wavelength of the pulse.

In cases 9 through 11, the boundary is constrained so that only that
portion of the boundary above the delamination is free. As the wave reflects
off this back surface, a shear wave will ensue from the region near the
constrained/unconstrained boundary. This shear wave propagates into the

interior and interacts with the delamination to produce excessive stresses.
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Since the shear wave is partially transmitted via the fibers, one would expect
to see variations in the fracture parameters depending on the stacking
sequence. The tests conducted verify this sensitivity. Since the shear waves
travel slower than the normal stress waves, the maximum value of the mode II
fracture parameters peak at a later time than the mode I parameters.

In all the simulations, the maximum fracture intensity conditions occurred
after the maximum of the tensile stress wave had passed slightly below the
crack and the compressive wave had partially reflected from the crack f-ee
surface. The critical strain energy release rate for unstable growth is still
in question, but under static loading tests Wang et al. (1980) (Reference 12)
quoted a value of 0.8 1b/in. This would imply that the spalling occurs well
before the maximum intensity conditions at a time just before the maximum
stress reaches the crack. In such a scenario, most of the energy would remain
as kinetic energy in a spall the size of which would be related to the stress
wavelength. This would effectively damp the wave in the main body by
preventing this energy from being converted to strain energy. The spall would
travel at a high rate of speed away from the main body. The velocity vector
plot in Figure 26 shows speeds on the order of 150 mph at the time of maximum
fracture intensity,

None of the simulations indicate that the initial tensile tail plays much
of a role in the fracture of the composite, This may not be true for loading
conditions other than the magnitude and profile assumed in the one~dimensional
simulations in Section 4.

Plots of the transverse normal and shear stress contours within the
singular element (0.0025 inch on edge) given in Figures 27 and 28 show a very
typical pattern. These plots are at a time of maximum fracture intensity. As
the wave interacts with the delamination, the region near the crack tip could
behave plastically. With this in mind, the contours of von Mises stress

plotted in Figure 29 give an indication of the size of the plastic region.
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Figure 26. Velocity Vector at Maximum Stress Intensity (t = 0.16 us)
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Figure 27. Normal Stress in the Singular Element (t = 0.16 us)
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Shear Stress in the Singular Element (t = 0.16 us)
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Figure 29,

Von-Mises Stress in the Singular Element (t = 0,16 us)
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6. UNIFIED MODEL FEASIBILITY STUDY

The long-range goal of this study is the development of a complete finite
element program for rapid thermal loading that is capable of an accurate and
complete thermodynamic description similar to the finite difference code used
in this study. As an interim measure we have used the finite difference model
to describe the energy deposition aspects of the problem and to follow the
resulting waves until they decay into the lower temperature solid behavior.

At this level, a transfer to the finite element code is made to study the sub-
sequent interaction with a pre-existing delamination., Such a treatment cannot,
however, properly treat the coupling of the effects of the crack on the stress
wave generation, which could be important for delaminations near the irradiated
surface. In addition to these coupling effects, each of the individual models
used in this Phase I study are inadequate, in certain respects, for describing
the high-energy, high-stress behavior of the composite material. This is in
part due to the lack of experimental data related to composites in this regime.
Nevertheless, certain aspects could be improved with current knowledge. For
example, in the current finite element model, the composite is treated as a
linearly elastic anisotropic material. Certainly, as the plate is heated, an
epoxy matrix would undergo some phase transition that alters its elastic
properties, while the graphite fibers might retain their elastic properties at
the same temperature, The result would be some anisotropic medium that behaves
like a fluid in certain directions. Similarly, after the wave has moved out
of the high-temperature region, the high stresses might cause the matrix to
deform plastically,

Certain algorithmic features need to be employed to allow for more than
one delamination, create new delaminations, and allow for partial or full
closing of delaminations depending on the nature of the stress wave. The logic
for closing delaminations may be conveniently expressed in the finite element
context via Lagrangian multipliers. These multipliers represent the contact
force between the sides of the delamination, In addition to interlaminar
delaminations, the model should consider transverse cracks, which may be
important when normal operating loads are also considered in the analysis,

In the current work, the stress wave generation was carried out in one
dimension. This limits the analysis to the generation of longitudinal waves,
The next step would be to carry out the analysis in two dimensions under plane

stress/strain or axisymmetric assumptions., Strictly speaking, the anisotropic
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and inhomogeneous properties of the ccimposite plate rule out any assumptions
of axisymmetry except in idealized cases. Similarly, plane stress/strain
assumptions are applicable only by restricting the nature of the laser area
deposition. The problem is truly three-dimensional, but the merit of three-
dimensional calculations must be weighed with their complexity and the state
of the art of the physical model. Three-dimensional simulations may be
feasible under certain settings. Since the grid size must be related to the
wavelength of the stress pulse, which is given by the laser pulse duration,
short pulses imply fine grids. For the same amount of work, one might model
long pulses over a large area, or short pulses over a small area.

Given that the physical models describing composites under extreme loading
conditions are still in their infancy, it is absolutely imperative that the
computer model be modular and structured. This will enable the model to
evolve as experimental evidence and physical models become available. All the
essential processes need to be at least identified early in the model
development tc form a framework to build on.

To this end, the finite element method offers just such a modular struc-
ture. Codes such as DYNA2D and DYNA3D, available in the public domain, are
based on a finite element formulation, which includes finite deformation,
large strain, and critical bulk viscosity to control shock waves. The codes
include a mesh rezoner to maintain a proper mapping in these Langrangian
calculations.

Unlike the FEAPICC codes, the formulation is explicit, This implies that
no matrices need to be assembled or eliminated, reducing the computer time and
memory. Since, for time accuracy, the step sizes must be set below the

stability limit, the explicit formulation offers no drawbacks in this regard.
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7. CORCLUSIONS

To summarize, we have addressed the problem of rapid deposition of thermal
energy on the surface of a composite plate. Several general aspects of the
problem have been described, and the assumptions regarding the analysis have
been enumerated. Existing codes have been modified to solve the stress pulse
generation and its subsequent interaction with a delamination within the .
composite plate. The finite difference model for simulation of the stress
wave generation includes the thermomechanical coupling and a general equation '
of state model to account for phase changes, The finite element model accounts
for the stress singularity of a delamination within the anisotropic composite
plies. This model has been modified to include thermal stresses, to calculate
the strain energy release rates, and to account properly for the plane strain
assumptions., Tests have been conducted to ensure that the modifications have
been implemented correctly and that the model is applicable to the problem we
address.

Our analysis shows that the strain energy is a quadratic function of the
mechanical and thermal loading with a strong coupling between the mechanical
and thermal parts. While the study of Wang et al, (1980) (Reference 12)
implies the contrary, the strain energy resulting from a combined mechanical
and thermal load is not generally the sum of the strain energies of each load
independently.

The results of the analvsis of the stress wave generation indicate that
the ensuing wave will have both compressive and tensile parts. The magnitude
of the tensile part depends on the tensile strength or fracture toughness of
the surface plies. As the wave propagates into the interior cf the plate, the
nonlinearities damp and spread this wave.

We have modeled, using the singular finite element method, the spalling
event as the stress wave reflects from the back surface and interacts with an
existing delamination, Our analysis indicates that the fracture parameters are
insensitive to the stacking sequence when the delamination interacts with a
pure tension wave. This is because the stress is transmitted primarily through
the matrix. If a shear wave results from the loading or boundary censtraints,
then tke stacking sequence has an appreciable effect on the fracture param-
eters, since the shear wave is transmitted via the fiber/matrix combination.
The ambient temperature of the plate also proved to be an important considera-
tion in the fracture, since the thermal deformation resulting from the curing

of the composite can be significant,
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There are many aspects of this model that need more attention. More

X experimental studies and models are needed to characterize the behavior of
composites under extreme loads., We recommend that the models for stress
generation and for its subsequent interaction with a delamination be unified

under one finite element framework, The inherent modular structure of the FEM

will lend itself to modifications as experimental data become available. Such

a code could also help guide the experimental program and aid the experimen-

N talists in interpreting their results.
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